Friday, August 28, 2009

A new PMEU application: quantitative MPN analyses of microbial counts

PMEU method is based on the rapid cultivations of several samples. The old idea to apply it in MPN (Most Probable Number) analyses has now proven to be correct: referring the Finnish Standard Book "SFS-KÄSIKIRJA 94: Mikrobiologiset vesitutkimusmenetelmät" (Methods for Microbiological Water Analysis) and discussions with specialists, PMEU can be used as an alternative, rapid method instead of the traditional technique, tube series in water bath or in an incubator. PMEU itself works as an incubator with a temperature deviation of < 0.1 oC.

A combination of 4 (levels of dilutions) * 5 (repeats) allows to follow the Finnish standard SFS 4447 (The Tube Method in Microbiological Water Analysis) as well as standards derived of it like SFS-EN ISO 9308-3 (for and coliforms) and SFS-EN ISO 7899-1 (for enterococci). Standards usually give MPN tables in the framework of 3*5 tubes (eg. for dilutions from 0 to 0.01) but PMEU gives an extra level (eg. 0 to 0.001) which covers a wider range of microbial counts. Samples with unknown levels of microbial densities are therefore easier to analyse correctly.

It seems that the leading status of membrane filtration has revised today. There are types of samples which are difficult or impossible to analyse with them (too much suspended solids etc.) and tube tests like MPN should be chosen. PMEU Tube Tests should be preferred also in situations where fast results (in hours, compared with days with colony count analyses) are needed.

Sunday, August 16, 2009

Applications of PMEU method for biofilm research and testing of biocides against biofilm growth


Paper machine biofilms have been studied already several years by microbiologist J.Mentu. Test coupons, made of steel brands used in paper machines, have been installed inside PMEU syringaes and the growth has been observed with UV Epifluorescence Microscopy after a short incubation period (see picture above).

This technique has now been modified for ordinary light microscopes, too. Steel coupons have been replaced by specified glass slides and the Gram-stained biofilms can be observed with Bright Field Microscopy - no expensive epifluorescence microscopes are needed in this application.

This method will detect all biofilm-producing microbes and testing of biofilm-preventing biocides is also possible simultaneously. Primary attachers typically appear on the slides in just hours and mature biofilms are available in 12...24 hours. This application is very suitable for all areas of industry where the hygiene of surfaces is important. It can also be applied in every environmental research projects where the formation of biofilms in natural water environments is the subject of the study. Hygiene control of public swimming pools etc. also benefit of this method.